Accelerating taxonomic discovery through automated character extraction

نویسندگان

  • JOHN LA SALLE
  • QUENTIN WHEELER
  • PAUL JACKWAY
  • SHAUN WINTERTON
  • DONALD HOBERN
  • DAVID LOVELL
چکیده

This paper discusses the following key messages. Taxonomy is (and taxonomists are) more important than ever in times of global change. Taxonomic endeavour is not occurring fast enough: in 250 years since the creation of the Linnean Systema Naturae, only about 20% of Earth’s species have been named. We need fundamental changes to the taxonomic process and paradigm to increase taxonomic productivity by orders of magnitude. Currently, taxonomic productivity is limited principally by the rate at which we capture and manage morphological information to enable species discovery. Many recent (and welcomed) initiatives in managing and delivering biodiversity information and accelerating the taxonomic process do not address this bottleneck. Development of computational image analysis and feature extraction methods is a crucial missing capacity needed to enable taxonomists to overcome the taxonomic impediment in a meaningful time frame.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Natural Language Processing in Biodiversity Science

Centuries of biological knowledge are contained in the massive body of scientific literature, written for human-readability but too big for any one person to consume. Large-scale mining of information from the literature is necessary if biology is to transform into a data-driven science. A computer can handle the volume but cannot make sense of the language. This paper reviews and discusses the...

متن کامل

A Study on Automated Relation Labelling in Ontology Learning

Ontology learning from texts has been proposed as a technology helping ontology designers in the modelling process. Within ontology learning, the discovery of non-taxonomic relations is understood as the problem least addressed. We propose a technique for extraction of lexical items that may give cue in assigning semantic labels to otherwise ‘anonymous’ non-taxonomic relations. The technique ha...

متن کامل

Survey on Perception of People Regarding Utilization of Computer Science & Information Technology in Manipulation of Big Data, Disease Detection & Drug Discovery

this research explores the manipulation of biomedical big data and diseases detection using automated computing mechanisms. As efficient and cost effective way to discover disease and drug is important for a society so computer aided automated system is a must. This paper aims to understand the importance of computer aided automated system among the people. The analysis result from collected da...

متن کامل

Guiding authors to reliably use taxonomic names.

4 de Carvalho, M.R. et al. (2007) Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomicautomation paradigm. Evol. Biol. 34, 140–143 5 Scotland, R. et al. (2003) The Big Machine and the much-maligned taxonomist. Syst. Biodivers. 1, 139–143 6 Maddison, D.R. et al. (2012) Ramping up biodiversity discovery via online quantum contributions. Trends Ecol. E...

متن کامل

Fish Ontology framework for taxonomy-based fish recognition

Life science ontologies play an important role in Semantic Web. Given the diversity in fish species and the associated wealth of information, it is imperative to develop an ontology capable of linking and integrating this information in an automated fashion. As such, we introduce the Fish Ontology (FO), an automated classification architecture of existing fish taxa which provides taxonomic info...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999